Overview

- Computer representation of “things”
- Unsigned Numbers
- Signed Numbers: search for a good representation
- Shortcuts
- In Conclusion

Review: The Programmer’s Model of a Microcomputer

Instruction Set:
- ldr r0, [r2, #0]
- add r2, r3, r4

Memory:
- 80000004 ldr r0, [r2, #0]
- 80000008 add r2, r3, r4
- 8000000B 23456
- 80000010 AEF0

Memory mapped I/O
- 80000100 input
- 80000108 output

Registers:
- r0 - r3, pc

Addressing Modes:
- ldr r12, [r1,#0]
- mov r1, r3

Programmer’s Model

How to access data in registers and memory? i.e. how to determine and specify the data address in registers and memory

Review: Compilation

- How to turn notation programmers prefer into notation computer understands?
- Program to translate C statements into Assembly Language instructions; called a compiler
- Example: compile by hand this C code:
 - a = b + c;
 - d = a - e;
- Easy:
 - add r1, r2, r3
 - sub r4, r1, r6
- Big Idea: compiler translates notation from 1 level of abstraction to lower level
What do computers do?

° Computers manipulate representations of things!

° What can you represent with N bits?
 • 2^N things!

° Which things?
 • Numbers! Characters! Pixels! Dollars! Position! Instructions!
 • Depends on what operations you do on them

Decimal Numbers: Base 10

° Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

° Example:

 $3271 = (3 \times 10^3) + (2 \times 10^2) + (7 \times 10^1) + (1 \times 10^0)$

Numbers: positional notation

° Number Base B => B symbols per digit:
 • Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 Base 2 (Binary): 0, 1

° Number representation:
 • $d_{31}d_{30} \ldots d_2d_1d_0$ is a 32 digit number
 • value = $d_{31} \times B^{31} + d_{30} \times B^{30} + \ldots + d_2 \times B^2 + d_1 \times B^1 + d_0 \times B^0$

° Binary: 0, 1
 • $1011010 = 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 0 \times 1 = 64 + 16 + 8 + 2 = 90$
 • Notice that 7 digit binary number turns into a 2 digit decimal number
 • A base that converts to binary easily?

Hexadecimal Numbers: Base 16 (#1/2)

° Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

° Normal digits have expected values

° In addition:
 • A \rightarrow 10
 • B \rightarrow 11
 • C \rightarrow 12
 • D \rightarrow 13
 • E \rightarrow 14
 • F \rightarrow 15
Hexadecimal Numbers: Base 16 (#2/2)

- Example (convert hex to decimal):
 \[B28F0DD = (B \times 16^6) + (2 \times 16^5) + (8 \times 16^4) + (F \times 16^3) + (0 \times 16^2) + (D \times 16^1) + (D \times 16^0) \]
 \[= (11 \times 16^6) + (2 \times 16^5) + (8 \times 16^4) + (15 \times 16^3) + (0 \times 16^2) + (13 \times 16^1) + (13 \times 16^0) \]
 \[= 187232477 \text{ decimal} \]

- Notice that a 7 digit hex number turns out to be a 9 digit decimal number

Decimal vs. Hexadecimal vs. Binary

- Examples:
 00 0
 01 1
 02 1001
 03 11
 04 100
 05 111
 06 110
 07 111
 08 1000
 09 1001
 10 11010
 11 11011
 12 1110
 13 1111

- 1010 1100 0101 (binary) = ? (hex)
- 10111 (binary) = 0001 0111 (binary) = ? (hex)
- 3F9 (hex) = ? (binary)

Hex to Binary Conversion

- HEX is a more compact representation of Binary!
- Each hex digit represents 16 decimal values.
- Four binary digits represent 16 decimal values.
- Therefore, each hex digit can replace four binary digits.

- Example:
 0011 1011 1001 1010 1100 1010 0000 0000two
 \[\text{C uses notation 0x3b9aca00} \]

Which Base Should We Use?

- Decimal: Great for humans; most arithmetic is done with these.
- Binary: This is what computers use, so get used to them. Become familiar with how to do basic arithmetic with them (+,-,*,/).
- Hex: Terrible for arithmetic; but if we are looking at long strings of binary numbers, it’s much easier to convert them to hex in order to look at four bits at a time.
How Do We Tell the Difference?

- In general, append a subscript at the end of a number stating the base:
 - 10_{10} is in decimal
 - 10_2 is binary ($= 2_{10}$)
 - 10_{16} is hex ($= 16_{10}$)

- When dealing with ARM computer:
 - Hex numbers are preceded with “&” or “0x”
 - $&10 == 0x10 == 10_{16} == 16_{10}$
 - Note: Lab software environment only supports “0x”
 - Binary numbers are preceded with “0b”
 - Octal numbers are preceded with “0”
 - Everything else by default is Decimal

Inside the Computer

- To a computer, numbers are always in binary; all that matters is how they are printed out: binary, decimal, hex, etc.

- As a result, it doesn’t matter what base a number in C is in...
 - $32_{10} == 0x20 == 100000_2$

- … only the value of the number matters.

What to do with representations of numbers?

- Just what we do with numbers!
 - Add them
 - Subtract them
 - Multiply them
 - Divide them
 - Compare them

- Example: $10 + 7 = 17$
 - 100001

Addition Table

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>
Addition Table (binary)

```
+ | 0 | 1 |
---|---|---|
0 | 0 | 1 |
1 | 1 | 10
```

Addition Table (Hex)

```
+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 |
2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 |
3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 |
4 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 |
5 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 |
6 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 |
7 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
8 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
9 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
A | A | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
B | B | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A |
C | C | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B |
D | D | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C |
E | E | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C | 1D |
F | F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C | 1D | 1E |
```

Quiz # 1 Result

<table>
<thead>
<tr>
<th>Title</th>
<th>N</th>
<th>% Correct Of:</th>
<th>Discrimination</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Whole Group</td>
<td>Upper 25%</td>
<td>Lower 25%</td>
</tr>
<tr>
<td>Arrays 1</td>
<td>131</td>
<td>70</td>
<td>91</td>
<td>48</td>
</tr>
<tr>
<td>Data types</td>
<td>131</td>
<td>67</td>
<td>91</td>
<td>27</td>
</tr>
<tr>
<td>Pointer to functions</td>
<td>131</td>
<td>45</td>
<td>69</td>
<td>18</td>
</tr>
<tr>
<td>Pointers</td>
<td>131</td>
<td>84</td>
<td>96</td>
<td>60</td>
</tr>
<tr>
<td>Pointers and addresses</td>
<td>131</td>
<td>83</td>
<td>100</td>
<td>54</td>
</tr>
<tr>
<td>Pointer initialisation</td>
<td>131</td>
<td>74</td>
<td>93</td>
<td>42</td>
</tr>
</tbody>
</table>

Overall Mean: 71.1 %

Bicycle Computer (Embedded)

- **P. Brain**
 - wireless heart monitor strap
 - record 5 measures: speed, time, current distance, elevation and heart rate
 - Every 10 to 60 sec.
 - 8KB data => 33 hours
 - Stores information so can be uploaded through a serial port into PC to be analyzed

http://www.specialized.com
Limits of Computer Numbers

° Bits can represent anything!

° Characters?
 • 26 letter => 5 bits
 • upper/lower case + punctuation => 7 bits (in 8) (ASCII)
 • rest of the world’s languages => 16 bits (unicode)

° Logical values?
 • 0 -> False, 1 => True

° colors?

° locations / addresses? commands?
 ° but N bits => only 2^N things

What if too big?

° Binary bit patterns above are simply representatives of numbers

° Numbers really have an infinite number of digits
 - with almost all being zero except for a few of the rightmost digits: e.g: 0000000 … 000098 == 98
 - Just don’t normally show leading zeros

° Computers have fixed number of digits
 - In general, adding two n-bit numbers can produce an (n+1)-bit result.
 - Since computers use fixed, 32-bit integers, this is a problem.
 - If result of add (or any other arithmetic operation), cannot be represented by these rightmost hardware bits, overflow is said to have occurred

Overflow Example

° Example (using 4-bit numbers):
 +15 1111
 +3 0011
 +18 10010

 • But we don’t have room for 5-bit solution, so the solution would be 0010, which is +2, which is wrong.

How avoid overflow, allow it sometimes?

° Some languages detect overflow (Ada), some don’t (C and JAVA)

° ARM has N, Z, C and V flags to keep track of overflow
 • Refer Book!
 • Will cover details later
Comparison

° How do you tell if \(X > Y \)?
° See if \(X - Y > 0 \)
→ We need representation for both +ve and −ve numbers

How to Represent Negative Numbers?

° So far, unsigned numbers
° Obvious solution: define leftmost bit to be sign!
 • \(0 \Rightarrow + \), \(1 \Rightarrow - \)
 • Rest of bits can be numerical value of number
° Representation called **sign and magnitude**
° ARM uses 32-bit integers. \(+1_{\text{ten}}\) would be:
 \[0000 \, 0000 \, 0000 \, 0000 \, 0000 \, 0000 \, 0000 \, 0001\]
° And \(-1_{\text{ten}}\) in sign and magnitude would be:
 \[1000 \, 0000 \, 0000 \, 0000 \, 0000 \, 0000 \, 0000 \, 0001\]

Shortcomings of sign and magnitude?

° Arithmetic circuit more complicated
 • Special steps depending whether signs are the same or not
° Also, Two zeros
 • \(0x00000000 = +0_{\text{ten}}\)
 • \(0x80000000 = -0_{\text{ten}}\)
 • What would it mean for programming?
° Sign and magnitude abandoned because another solution was better

Another try: complement the bits

° Example: \(7_{10} = 00111_2\) \(-7_{10} = 11000_2\)
° Called **one's Complement**
° Note: positive numbers have leading 0s, negative numbers have leadings 1s.

\[0000 \, 0001 \, ... \, 0111\]
\[1000 \, ... \, 1111 \, 0 \, 1111\]
° What is \(-0000\)?
° How many positive numbers in \(N\) bits?
° How many negative ones?
Shortcomings of ones complement?

- Arithmetic not too hard

- Still two zeros
 - 0x00000000 = +0_{ten}
 - 0xFFFFFFFF = -0_{ten}
 - What would it mean for programming?

- One's complement eventually abandoned because another solution was better

Search for Negative Number Representation

- Obvious solution didn't work, find another

- What is result for unsigned numbers if tried to subtract large number from a small one?
 - Would try to borrow from string of leading 0s, so result would have a string of leading 1s
 - 3 – 7 = –4
 - 000011
 - 111100
 - 111111
 - 3 – 4 = –1
 - 000000
 - 111111

- With no obvious better alternative, pick representation that made the hardware simple:
 - leading 0s => positive, leading 1s => negative
 - 000000...xxx is >=0, 111111...xxx is < 0

- This representation called two's complement.

Two’s Complement

- 0000 ... 0000 0000 0000 0000_{two} = 0_{ten}
- 0000 ... 0000 0000 0000 0001_{two} = 1_{ten}
- 0000 ... 0000 0000 0000 0010_{two} = 2_{ten}
- 0000 ... 0000 0000 0000 0011_{two} = 3_{ten}
- 0000 ... 0000 0000 0000 1000_{two} = –2_{ten}
- 0000 ... 0000 0000 0000 1001_{two} = –3_{ten}

- One zero, 31st bit ➔ >=0 or <0, called sign bit
 - but one negative with no positive –2,147,483,648_{ten}
Two’s Complement Formula, Example

Recognizing role of sign bit, can represent positive and negative numbers in terms of the bit value times a power of 2:

- \(d_{31} \times -2^{31} + d_{30} \times 2^{30} + ... + d_2 \times 2^2 + d_1 \times 2^1 + d_0 \times 2^0 \)

Example

\[1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1100_{\text{two}} \]

\[= 1 \times -2^{31} + 1 \times 2^{30} + 1 \times 2^{29} + ... + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 \]

\[= -2^{31} + 2^{30} + 2^{29} + ... + 2^2 + 0 + 0 \]

\[= -2,147,483,648_{\text{ten}} + 2,147,483,644_{\text{ten}} \]

\[= -4_{\text{ten}} \]

Two’s complement shortcut: Negation

- Invert every 0 to 1 and every 1 to 0, then add 1 to the result

- Sum of number and its inverted representation must be \((111...111_{\text{two}} = -1_{\text{ten}}) \)

- Let \(x' \) mean the inverted representation of \(x \)

- Then \(x + x' = -1 \Rightarrow x + x' + 1 = 0 \Rightarrow x' + 1 = -x \)

Example: -4 to +4 to -4x:

\[1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1100_{\text{two}} \]

\[x' : 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0011_{\text{two}} \]

\[+1 : 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0100_{\text{two}} \]

\[()' : 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1011_{\text{two}} \]

\[+1 : 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1100_{\text{two}} \]

And in Conclusion...

- We represent “things” in computers as particular bit patterns: N bits \(\rightarrow 2^N \)
 - numbers, characters, ... (data)

- Decimal for human calculations, binary to understand computers, hex to understand binary

- 2’s complement universal in computing: cannot avoid, so learn

- Computer operations on the representation correspond to real operations on the real thing

- Overflow: numbers infinite but computers finite, so errors occur